In vivo kindling does not alter afterhyperpolarizations (AHPs) following action potential firing in vitro in basolateral amygdala neurons.
نویسندگان
چکیده
Kindling in vivo results in enhanced glutamatergic synaptic transmission and epileptiform bursting in vitro in neurons of the basolateral amygdala (BLA). We tested the hypothesis that reduction of intrinsic inhibitory mechanisms, such as the slow- and medium-afterhyperpolarizations (s-AHPs, m-AHPs), contributes to the enhanced neuronal excitability observed in kindling-induced epileptogenesis using intracellular recording methodology. In these studies, neurons were recorded from the BLA contralateral to the kindling site. AHPs following depolarizing current-induced (100 ms, 1 nA) action potentials were recorded from BLA neurons of control and kindled animals. We found no difference in the amplitude of the s-AHP and m-AHP, or the duration of the s-AHP between control and kindled neurons. In addition, kindling did not alter the distribution of accommodating/non-accommodating BLA neurons (as assessed from neuronal responses during long (500 ms) depolarizing current injection). It is concluded that an alteration in the neuronal network within the BLA rather than a blockade of an intrinsic inhibitory mechanism underlies the enhanced excitability recorded in BLA neurons following kindling.
منابع مشابه
Learning-dependent plasticity of hippocampal CA1 pyramidal neuron postburst afterhyperpolarizations and increased excitability after inhibitory avoidance learning depend upon basolateral amygdala inputs.
Hippocampal pyramidal neurons in vitro exhibit transient learning-dependent reductions in the amplitude and duration of calcium-dependent postburst afterhyperpolarizations (AHPs), accompanied by other increases in excitability (i.e., increased firing rate, or reduced spike-frequency accommodation) after trace eyeblink conditioning or spatial learning, with a time-course appropriate to support c...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملEffect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats
Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملMemory-enhancing intra-basolateral amygdala clenbuterol infusion reduces post-burst afterhyperpolarizations in hippocampal CA1 pyramidal neurons following inhibitory avoidance learning.
Activation of the basolateral amygdala can modulate the strength of fear memories, including those in single-trial inhibitory avoidance (IA) tasks. Memory retention, measured by the latency to re-enter a dark-compartment paired 24h earlier with a footshock, varies with intensity of this aversive stimulus. When higher intensity footshocks were used, hippocampal CA1 pyramidal neurons exhibited re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 588 2 شماره
صفحات -
تاریخ انتشار 1992